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Abstract: This paper is concerned with the existence of mild solutions to a class of semilinear differential inclu-
sions with nonlocal conditions. By using the fixed point theory for multivalued maps, we get some general results
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example of partial differential equations is provided to illustrate our results.
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1 Introduction
In this paper, we are concerned with the existence of
mild solutions for the following nonlocal differential
inclusions{

u′(t) ∈ Au(t) + F (t, u(t)), t ∈ [0, b],
u(0) = g(u),

(1)

where A : D(A) ⊆ X → X is the densely defined
generator of a strongly continuous semigroup T (·) in
a Banach space (X, ∥ ·∥), F is an upper Carathéodory
multifunction, g : C([0, b];X) → X is a given X-
valued function.

The study of abstract nonlocal initial-value prob-
lems was first discussed by Byszewski [1, 2]. Since
nonlocal initial condition u(0) = g(u) has better ef-
fect in some physical problems than the classical ini-
tial condition u(0) = u0, the theory of semilinear
equations and inclusions with nonlocal conditions at-
tracts the attention of many researchers. In the past
several years, the theorems about existence, unique-
ness and controllability of solutions of nonlocal differ-
ential and functional differential equations have been
studied in [3-17]. Ntouyas and Tsamatos [4], Xue
[5, 6] studied the following semilinear differential
equation under Lipschitz or compact conditions on f
and g,{

u′(t) = Au(t) + f(t, u(t)), t ∈ (0, b],
u(0) = g(u),

where A is the infinitesimal generator of a compact
semigroup T (t), t ≥ 0. Especially, the measure
of noncompactness is used as an effective method to

deal with the compactness of solution operators aris-
ing from nonlocal problem, see[6, 9, 10].

Cardinali and Rubbioni[18] proved the existence
of mild solutions to semilinear evolution differential
inclusions without nonlocal conditions when F is up-
per semicontinuous. V. Obukhovskii[19] applied the
theory of integrated semigroups and the fixed point
theory of condensing multivalued maps to obtain local
and global existence results. Guo et al.[8], Chang et
al.[13] got some existence and controllability results
of differential inclusions with impulsive conditions. J.
Garcı́a-Falset[15] discusses the nonlinear inclusions
with nonlocal initial conditions for the case when F
is compact and g is condensing.

Motivated by the above works, we study the non-
local differential inclusions (1) when multifunction F
has not the compactness assumptions, which extend
the results in [5] to differential inclusions scenario.
Some general results are obtained when the nonlocal
item g is Lipschitz continuous or compact, is not Lip-
schitz continuous and not compact, respectively. The
cases that g is continuous in C([0, b];X) and g is con-
tinuous in L1([0, b];X) are also included in our re-
sults. In Section 4, we discuss the nonlocal problem
(1) under more general assumptions (see the hypothe-
ses (b1), (b2)). The existence results in [11, 17] can
be obtained as the corollaries of our main result, see
Corollary 8 and Corollary 10.

This paper is organized as follows. In Section 2,
we recall some concepts and facts about multivalued
map and evolution system. In section 3, we obtain the
existence of mild solutions for nonlocal problem (1)
when Lipschitz conditions are satisfied. In section 4,
we give the existence results when g is not Lipschitz
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and not compact. In section 5, we get the existence
results when g is completely continuous. At last, an
example is presented to illustrate the application of
our results.

2 Preliminaries
In this section, we introduce some definitions and pre-
liminary facts for multivalued analysis which will be
useful in this paper.

Let X and Y be two Hausdorff topological
spaces. We use the notation

P (Y ) = {A ∈ 2Y : A ̸= ϕ},

Pcl(Y ) = {A ∈ P (Y ) : A closed},

Pb(Y ) = {A ∈ P (Y ) : A bounded},

Pc(Y ) = {A ∈ P (Y ) : A convex},

Pcp(Y ) = {A ∈ P (Y ) : A compact},

Pcp,c(Y ) = {A ∈ P (Y ) : A ∈ Pcp(Y )
∩
Pc(Y )}.

A multivalued map F : X → P (Y ) is said to be
convex(closed) valued if F (x) is convex(closed) in Y
for all x ∈ X . F is said to be compact if F (B) is
relatively compact for every B ∈ Pb(X).

F : X → P (Y ) is said to be upper semi-
continuous (u.s.c.) on X if for each x0 ∈ X the
set F (x0) is a nonempty, closed subset of Y , and
if for each open subset K of Y containing F (x0),
there exists an open neighborhood Γ of x0 such that
F (Γ) ⊆ K.

The following conclusions are useful to get the
upper semi-continuity of a multifunction F . Assume
that D ⊂ X and Fx is closed for all x ∈ D, then the
following conclusions hold:

(i) If F is u.s.c. and D is closed, then F has a
closed graph, i.e.,

xn → x, yn → y, yn ∈ F (xn) imply y ∈ F (x).

(ii) If F (D) is compact and D is closed, then F
is u.s.c. if and only if F has a closed graph.

Through this paper, let (X, ∥ · ∥) be a real Ba-
nach space. We denote by C([0, b];X) the space of
X-valued continuous functions on [0, b] with the norm

∥x∥C = sup{∥x(t)∥, t ∈ [0, b]}

and by L1([0, b];X) the space of X-valued Bochner
integrable functions on [0, b] with the norm ∥f∥L1 =∫ b
0 ∥f(t)∥ dt. We define

SF (u) =: {f ∈ L1([0, b];X) : f(t) ∈ F (t, u(t))
a.e. on [0, b]}

and say that F has a fixed point if there exists x ∈ X
such that x ∈ F (x).

Definition 1 A function u ∈ C([0, b];X) is said to be
a mild solution of the problem (1) if it satisfies

u(t) = T (t)g(u) +

∫ t

0
T (t− s)f(s) ds, t ∈ [0, b],

where f ∈ SF (u).

We first give the hypothesis for the function F .

(HF) F is an upper Carathéodory multifunction, i.e.,
for every x ∈ X , F (·, x) : [0, b] → Pcp, c(X) ad-
mits a strongly measurable selector; for a.e. t ∈ [0, b],
F (t, ·) : X → Pcp,c(X) is u.s.c.. And for every
u ∈ C([0, b];X), the set SF (u) is nonempty.

Lemma 2 ([20]) Let X be a Banach space and F a
multivalued map satisfying assumption (HF). Let

Γ : L1([0, b];X)→ C([0, b];X))

be a linear continuous map. Then the operator

Γ ◦ SF : C([0, b];X)→ Pcl,c(C([0, b];X)),

x→ (Γ ◦ SF )(x) := Γ(SF (x)),

is a closed graph operator in C([0, b];X) ×
C([0, b], X).

Lemma 3 ([21]) Let D be a nonempty, closed, con-
vex subset of a completely Hausdorff locally convex
linear topological space and let G : D → P (D) be
an upper semicontinuous, compact map with G(x) a
nonempty, closed, convex subset of D. Then G has a
fixed point in D.

3 Lipschitz conditions
In this section, by using contraction principle, we
prove the existence of nonlocal problem (1) when g
is Lipschitz continuous in C([0, b];X). We recall the
Hausdorff distance dH(A,B) between set A and B,
which is defined by

dH(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where
d(a,B) = inf{d(a, b); b ∈ B},

d(A, b) = inf{d(a, b); a ∈ A}.

We let
M = sup

t∈[0,b]
∥T (t)∥.
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A multivalued operator F : X → Pcl(X) is
called

(i) δ−Lipschitz if and only if there exists δ > 0
such that dH(F (u), F (v)) ≤ δd(u, v) for all u, v ∈
X .

(ii) a contraction if and only if it is δ−Lipschitz
with δ < 1.

Here we list the following hypotheses:
(a1) There exist constant L > 0, K > 0 such

that
dH(F (t, x), F (t, y)) ≤ L∥x− y∥, (2)

for t ∈ [0, b], a.e.,x, y ∈ X;

∥g(u)− g(v)∥ ≤ K∥u− v∥C , (3)

for u, v ∈ C([0, b];X).
(a2) MK +MbL < 1.

Theorem 4 Assume that the hypotheses (HF), (a1)
and (a2) are satisfied, then the nonlocal problem (1)
has at least one mild solution on [0, b].

Proof: Define the multivalued operator

G : C([0, b];X)→ P (C([0, b];X))

by

G(u) = {v ∈ C([0, b];X) : v(t) = T (t)g(u)

+

∫ t

0
T (t− s)f(s) ds, f ∈ SF (u)}.

It is easy to see that the fixed point of G is the mild
solution of nonlocal problem (1). We will show that
G has at least a fixed point due to the contraction prin-
ciple.

Firstly, we show that G has a closed graph on
C([0, b];X) with closed convex values. It is easy to
check that G has convex values. In fact, let v1, v2 ∈
Gu. Then there exist f1, f2 ∈ SF (u) such that

v1(t) = T (t)g(u) +

∫ t

0
T (t− s)f1(s) ds,

v2(t) = T (t)g(u) +

∫ t

0
T (t− s)f2(s) ds.

For any given λ ∈ [0, 1], we have

λv1(t) + (1− λ)v2(t) = T (t)g(u)

+

∫ t

0
T (t− s)[λf1(s) + (1− λ)f2(s)] ds.

As the set SF (u) is convex in L1([0, b];X), we get
that

λf1 + (1− λ)f2 ∈ L1([0, b];X),

and
λf1 + (1− λ)f2 ∈ SF (u).

So we can draw the conclusion that

λv1 + (1− λ)v2 ∈ Gu,

i.e., G has convex values.
Now we show that G has a closed graph. Let

(um)m∈N and (vm)m∈N ⊂ C([0, b];X) satisfy

um → u, vm ∈ G(um), vm → v,

in C([0, b];X). Then there exists a sequence
{fm}∞m=1 ⊂ L1([0, b];X), fm ∈ SF (um) for m ≥ 1,
such that

vm(t) = T (t)g(um) +

∫ t

0
T (t− s)fm(s) ds,

for all t ∈ [0, b]. Consider the linear operator

Γ : L1([0, b];X)→ C([0, b];X)

defined as

(Γf)(t) =

∫ t

0
T (t− s)f(s) ds.

Obviously, Γ is linear and continuous. Then from
Lemma 2, we get that Γ ◦ SF (·) is a closed graph op-
erator. Moreover, we have

vm(·)− T (·)g(um) ∈ Γ ◦ SF (um).

Since um → u and vm → v, we obtain that

v(·)− T (·)g(u) ∈ Γ ◦ SF (u),

that is,

v(t)− T (t)g(u) =
∫ t

0
T (t− s)f(s) ds,

for some f ∈ SF (u). Therefore,G has a closed graph.
Hence G has closed values on C([0, b];X).

It remains to prove that G is a contraction opera-
tor. Let u1, u2 ∈ C([0, b];X) and v1 ∈ G(u1). Then
there exists h1 ∈ SF (u1), such that

v1(t) = T (t)g(u1)+

∫ t

0
T (t−s)h1(s) ds, t ∈ [0, b].

By (2), we have that

dH(F (t, u1(t)), F (t, u2(t))) ≤ L∥u1(t)− u2(t)∥,

for t ∈ [0, b]. There exists ψ ∈ F (t, u2(t)) such that

∥h1(t)− ψ∥X ≤ L∥u1(t)− u2(t)∥X .
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The multivalued map Θ : [0, b]→ P (X) defined by

Θ(t)={ψ ∈ X : ∥h1(t)−ψ∥X≤L∥u1(t)−u2(t)∥X}

is measurable. Hence there exists h2 measurable such
that

h2(t) ∈ Θ(t)
∩
F (t, u2(t))

for each t ∈ [0, b]. Then h2(t) ∈ F (t, u2(t)) and

∥h1(t)− h2(t) ≤ L∥u1(t)− u2(t)∥, t ∈ [0, b]. (4)

Set

v2(t) = T (t)g(u2)+

∫ t

0
T (t−s)h2(s) ds, t ∈ [0, b].

Then

v1(t)− v2(t)
= T (t)[g(u1)− g(u2)]

+

∫ t

0
T (t− s)[h1(s)− h2(s)] ds.

Since ∥T (t)∥ ≤ M , it follows from assumption (a1)
and (4)

∥v1(t)− v2(t)∥
≤ ∥T (t)[g(u1)− g(u2)]∥

+

∫ t

0
∥T (t− s)∥ ∥h1(s)− h2(s)∥ ds

≤ MK∥u1 − u2∥C +MbL∥u1 − u2∥C
≤ (MK +MbL)∥u1 − u2∥C .

Interchanging the role of v1 and v2, we see that

dH(Gu1, Gu2) ≤ (MK +MbL)∥u1 − u2∥C .

From assumption (a2) we get that G is a contraction
operator. At last, we apply Nadler’s Theorem [22] to
deduce that G has a fixed point u0, which is a solution
of nonlocal problem (1). This completes the proof. ⊓⊔

4 g is not Lipschitz and not compact

In this section, we give the existence of mild solutions
for the nonlocal problem (1) when the nonlocal item
g is not Lipschitz and not compact in C([0, b];X),
which extends many previous results in this area.

We also consider the map G on C([0, b];X) de-
fined by

(Gu)(t) =
{
v ∈ C([0, b];X) : v(t) = T (t)g(u)

+

∫ t

0
T (t− s)f(s) ds, f ∈ SF (u)

}
,

with
(G1u)(t) = T (t)g(u),

(G2u)(t) =
{
v ∈ C([0, b];X) : v(t)

=

∫ t

0
T (t− s)f(s) ds, f ∈ SF (u)

}
.

Clearly u is a mild solution of the nonlocal problem
(1) if and only if u is a fixed point of the mapG. Write
Yr = {u ∈ C([0, b];X) : ∥u(t)∥ ≤ r for t ∈ [0, b]}.

Here, we list the following hypotheses:
(HA) A : D(A) ⊆ X → X , generates a compact

strongly continuous operator semigroup {T (t) : t ≥
0}, that is, T (t) is compact for t > 0. Moreover,
there exists a positive constant M > 0 such that M =
sup
0≤t≤b

∥T (t)∥ (see[23]).

(b1) g : C([0, b];X)→ X is continuous.
(b2) For any r > 0, the set g(convGYr) is pre-

compact, where convB denotes the convex closed
hull of set B ⊆ C([0, b];X).

Remark 5 Clearly the condition (b2) is weaker than
the compactness and convexity of g. The same hy-
pothesis can be seen in Xue[5], where the author con-
sidered the existence of mild solutions for semilinear
differential equations with nonlocal conditions when
A is a linear, densely defined operator on X which
generates a C0−semigroup. After the proof of our
main result, we will give some special types of non-
local item g which are neither Lipschitz nor compact,
but satisfy the condition (b2) in the next corollaries.

Theorem 6 Assume that the hypotheses (HF), (HA),
(b1), (b2) are satisfied, then the nonlocal problem (1)
has at least one mild solution on [0, b] provided that

M [ sup
u∈Yr

∥g(u)∥+ b sup{∥f(t)∥ :

t ∈ [0, b], f ∈ SF (u), u ∈ Yr} ] ≤ r. (5)

To prove the above theorem, we need some lem-
mas.

Lemma 7 Suppose that conditions (HF) and (HA)
are satisfied. Then the map

Q : Yr → P (C([0, b];X))

defined by

(Qu)(t) =

{
v ∈ C([0, b];X) :

v(t) =

∫ t

0
T (t− s)f(s) ds, f ∈ SF (u)

}
is compact.
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Proof: It is enough to show that QYr is relatively
compact in C([0, b];X).

Firstly, we show that, for each t ∈ [0, b], u ∈ Yr
the set (Qu)(t) is relatively compact in X . In fact, if
t = 0, then (Qu)(0) = 0. For given t ∈ (0, b] and
ε ∈ (0, t),

(Qεu)(t) :=

{∫ t−ε

0
T (t−s)f(s) ds : f ∈ SF (u)

}
=

{
T (ε)

∫ t−ε

0
T (t− ε− s)f(s) ds :

f ∈ SF (u)
}

is relatively compact in X since T (ε) is compact for
ε > 0. Then, as

(Qεu)(t)→ (Qu)(t), as ε→ 0,

we conclude that, for each t ∈ [0, b], (Qu)(t) is rela-
tively compact in X by using the total boundedness.

Next, we prove the equicontinuity of QYr. We let
0 ≤ t1 < t2 ≤ b, f ∈ SF (u), u ∈ Yr and obtain∥∥∥∥ ∫ t2

0
T (t2 −s)f(s)ds−

∫ t1

0
T (t1− s)f(s)ds

∥∥∥∥
=

∥∥∥∥ ∫ t1

0
[T (t2 − s)− T (t1 − s)]f(s) ds

+

∫ t2

t1
T (t2 − s)f(s) ds

∥∥∥∥
≤

∫ t1

0

∥∥∥T (t2 − s)− T (t1 − s)∥∥∥
L(X)
∥f(s)∥ds

+M

∫ t2

t1
∥f(s)∥ds. (6)

If t1 = 0, then the right hand of (6) can be made small
when t2 is small independent of u ∈ Yr. If t1 > 0,
then we can find a small number ε > 0 with t1−ε > 0,
then it follows from (6) that∫ t1

0

∥∥∥T (t2 − s)− T (t1 − s)∥∥∥
L(X)
∥f(s)∥ ds

+M

∫ t2

t1
∥f(s)∥ds

≤
∫ t1−ε

0

∥∥∥T (t2 − s)− T (t1 − s)∥∥∥
L(X)
∥f(s)∥ ds

+ 2Mε ·max{∥f(s)∥ : f ∈ SF (u), u ∈ Yr}

+M

∫ t2

t1
∥f(s)∥ ds. (7)

Here, as T (t) is compact for t > 0. Thus T (t) is
operator norm continuous for t > 0. Therefore, we
have∫ t1−ε

0

∥∥∥T (t2 − s)− T (t1 − s)∥∥∥
L(X)
∥f(s)∥ds→ 0,

as t1 → t2, uniformly for all f ∈ SF (u) and u ∈ Yr.
Then, from (7), we see that

{(Qu)(·) : u ∈ Yr}

is equicontinuous. By Ascoli-Arzela theorem, we
know that QYr is relatively compact in C([0, b];X).
This completes the proof. ⊓⊔
Proof of Theorem 6. We will prove G has a fixed
point by using Lemma 3. Firstly we claim thatGmaps
Yr into itself. For t ∈ [0, b], u ∈ Yr, f ∈ SF (u), from
(5), we have

∥(Gu)(t)∥ ≤ ∥T (t)g(u)∥+
∫ t

0
∥T (t−s)f(s)∥ds

≤ M [ sup
u∈Yr

∥g(u)∥+ b sup{∥f(t)∥ :

t ∈ [0, b], f ∈ SF (u), u ∈ Yr} ]
≤ r.

The key of the following proof is that we con-
struct a set Y ⊆ Yr such thatG : Y → Y is a compact
map with nonempty closed, convex values. Indeed, it
is easy to check that G has convex values. From the
proof of Theorem 4, we have got that G has a closed
graph on C([0, b];X). Then G has closed values on
Yr. Now, it remains to prove that G is compact.

For each t ∈ (0, b], the set {T (t)g(u) : u ∈ Yr}
is relatively compact in X since T (t) is compact for
t > 0. Next, we prove that G1Yr is equicontinuous
on [η, b] for any small positive number η. As T (t) is
operator norm continuous for t > 0. Then for u ∈ Yr
and η ≤ t1 < t2 ≤ b, we have

∥T (t2)g(u)− T (t1)g(u)∥
= ∥[T (t2)− T (t1)]g(u)∥ → 0,

as t1 → t2, uniformly for all u ∈ Yr.
Moreover, from Lemma 7, we know that for each

t ∈ [0, b], the set (G2Yr)(t) is relatively compact in
X and G2Yr is equicontinuous on [0, b]. Thus, for

G = G1 +G2,

we have proved that (GYr)(t) is relatively compact
for each t ∈ (0, b] and GYr is equicontinuous on [η, b]
for any small positive number η.

Let
Y = convGYr.

We get that Y is a bounded closed and convex subset
of C([0, b];X), Y ⊂ Yr and GY ⊂ Y . It is easy to
see that GY (t) is relatively compact in X for every
t ∈ (0, b] and GY is equicontinuous on [η, b] for any
small positive number η. From hypothesis (b2) we
know that g(Y ) = g(convGYr) is pre-compact.
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Now we claim thatG : Y → Y is a compact map.
In fact, (G1Y )(t) is relatively compact in X for every
t ≥ 0 since

g(Y ) = g(convGYr)

is pre-compact by hypothesis (b2). It remains to prove
that G1Y is equicontinuous on [0, b]. For that, let u ∈
Y , and 0 ≤ t1 < t2 ≤ b, we have

∥(G1u)(t1)− (G1u)(t2)∥ ≤ ∥[T (t1)− T (t2)]g(u)∥.

In view of the compactness of g(Y ) and the strong
continuity of T (t) on [0, b], we obtain the equiconti-
nuity of G1Y on [0, b]. Thus,

G1 : Y → C([0, b];X)

is a compact map by Ascoli-Arzela theorem and hence
G = G1 +G2 is also compact from Lemma 7. Since
G has a closed graph, then we also have thatG is u.s.c.

Finally, due to Lemma 3, G has at least one fixed
point u ∈ Gu and u is a mild solution of the nonlocal
problem (1). This completes the proof. ⊓⊔

Next, we will give some special types of nonlo-
cal item g which is neither Lipschitz nor compact but
satisfies the condition (b2). We give the following as-
sumptions.

(c1) g : C([0, b];X) → X is a continuous map,
which maps Yr into a bounded set, and there is a δ =
δ(r) ∈ (0, b) such that g(u) = g(v) for any u, v ∈ Yr,
with u(s) = v(s), s ∈ [δ, b].

(c2) g : (C([0, b];X), ∥·∥L1)→ X is continuous.

Corollary 8 Assume that the hypotheses (HF),
(HA), (c1) are satisfied, then the nonlocal problem
(1) has at least one mild solution on [0, b] provided
that

M [ sup
u∈Yr

∥g(u)∥+ b sup{∥f(t)∥ :

t ∈ [0, b], f ∈ SF (u), u ∈ Yr} ] ≤ r.

Proof: Let

(GYr)δ = {u ∈ C([0, b];X) : u(t) = v(t) for

t ∈ [δ, b], u(t) = v(δ) for t ∈ [0, δ), where

v ∈ GYr}

From the proof of Theorem 6, we know that
(GYr)δ is precompact in C([0, b];X). Moreover, by
conditions (c1),

g(convGYr) = g(conv(GYr)δ)

is also precompact in C([0, b];X). Thus all the condi-
tions in Theorem 6 are satisfied. Therefore there exists
at least one mild solution of nonlocal problem (1). ⊓⊔

Remark 9 In Zhu and Li [17], the authors get the ex-
istence of nonlocal problem (1) under condition (c1)
by using the method of approximation solutions. Now
we can obtain that result as a special case of Theorem
6. In many studies of nonlocal Cauchy problems, for
example[1, 3], the map g is given by

g(t1, · · · , tp, u(t1), · · · , u(tp)) =
p∑

i=1

ciu(ti),

for some given constants ci. In these cases,

g(t1, · · · , tp, u(t1), · · · , u(tp))

allows the measurements at t = t1, · · · , tp, rather than
just at t = 0. It is easy to see that g satisfies condition
(c1).

Corollary 10 Assume that the hypotheses (HF),
(HA), (c2) are satisfied, then the nonlocal problem
(1) has at least one mild solution on [0, b] provided
that

M [ sup
u∈Yr

∥g(u)∥+ b sup{∥f(t)∥ :

t ∈ [0, b], f ∈ SF (u), u ∈ Yr} ] ≤ r.

Proof: According to Theorem 6, we should only
prove that the hypothesis (b2) is satisfied.

For arbitrary ε > 0, there exists 0 < δ < b such
that ∫ δ

0
∥u(s)∥ds < ε

for u ∈ GYr. Let (GYr)δ = {u ∈ C([0, b];X) :
u(t) = v(t) for t ∈ [δ, b], u(t) = v(δ) for t ∈
[0, δ), where v ∈ GYr}. From the proof of The-
orem 6, we know that (GYr)δ is precompact in
C([0, b];X) which implies that (GYr)δ is precom-
pact in L1([0, b];X). Thus GYr is pre-compact in
L1([0, b];X) as it has a ε-net (GYr)δ.

By condition g : (C([0, b];X), ∥ · ∥L1) → X is
continuous and

convGYr ⊆ (L)convGYr,

it follows that condition (b2) is satisfied, where
(L)convB denotes the convex and closed hull of B
in L1([0, b];X). Therefore, the nonlocal problem (1)
has at least one mild solution on [0, b]. ⊓⊔

Remark 11 In [11], Aizicovici and McKibben sup-
pose that

g : L1([0, b];X)→ X

is continuous with linear growth condition with re-
spect to the norm of L1([0, b];X). By using the fixed

WSEAS TRANSACTIONS on MATHEMATICS Shaochun Ji, Gang Li

E-ISSN: 2224-2880 1211 Issue 12, Volume 12, December 2013



point theorem on L1([0, b];X), they obtain the ex-
istence of integral solutions for nonlinear nonlocal
problems with multivalued perturbations. In this pa-
per, by using the fixed point theorem on C([0, b];X)
rather than on L1([0, b];X), we also get the mild so-
lutions for the nonlocal problem (1).

Corollary 12 Consider the nonlocal Cauchy problem
(1). Let the hypotheses (HA), (HF), (b1), (b2) hold
true. Suppose that there exist α ∈ L1([0, b];R+) and
a non-decreasing function

K : R+ → R+

such that

∥F (t, x)∥ := sup{∥y∥ : y ∈ F (t, x)}
≤ α(t)K(∥x∥), (8)

and

∥g(u)∥ ≤ k1∥u∥βC + k2, k1, k2 ∈ R+, 0 ≤ β < 1
(9)

then the nonlocal problem (1) has at least one mild
solution on [0, b], provided that

lim sup
r→∞

[
K(r)

r

∫ b

0
α(t) dt] <

1

M
. (10)

Proof: From (10), we know that

lim sup
r→∞

M [k1r
β + k2 +K(r)

∫ b
0 α(t) dt]

r
< 1,

which implies there exists some r > 0 such that

M [k1r
β + k2 +K(r)

∫ b

0
α(t) dt ≤ r.

Then we can get that the condition (5) is true. Thus,
all the conditions in Theorem 6 are satisfied and the
nonlocal problem (1) has at least one mild solution on
[0, b]. This completes the proof. ⊓⊔

5 g is completely continuous

In this section, we give the existence result when the
nonlocal item g is completely continuous, i.e., g is
continuous and maps a bounded set into a relatively
compact set. Here the hypothesis (b2) in Section 4 is
not needed. We list the following hypotheses:

(d1) g : C([0, b];X) → X is a completely con-
tinuous operator.

(d2) There exists a constant r > 0 such that

M [ sup
u∈Yr

∥g(u)∥+ b sup{∥f(t)∥ :

t ∈ [0, b], f ∈ SF (u), u ∈ Yr} ] ≤ r,

where Yr := {u ∈ C([0, b];X) : ∥u(t)∥ ≤ r for t ∈
[0, b]}.

Theorem 13 Assume that the hypotheses (HF), (HA),
(d1),(d2) are satisfied, then the nonlocal problem (1)
has at least one mild solution on [0, b].

Proof. For any u ∈ Yr, we define an operator G on
C([0, b];X) by

(Gu)(t) =
{
v ∈ C([0, b];X) : v(t) = T (t)g(u)

+

∫ t

0
T (t− s)f(s) ds, f ∈ SF (u)

}
,

with
(G1u)(t) = T (t)g(u),

(G2u)(t) =
{
v ∈ C([0, b];X) : v(t)

=

∫ t

0
T (t− s)f(s) ds, f ∈ SF (u)

}
.

Firstly, we claim that G maps Yr into itself. In
fact, for t ∈ [0, b], u ∈ Yr, f ∈ SF (u), from hypothe-
sis (d2), we have

∥(Gu)(t)∥ ≤ ∥T (t)g(u)∥

+

∫ t

0
∥T (t− s)f(s)∥ds

≤ M [ sup
u∈Yr

∥g(u)∥+ b sup{∥f(t)∥ :

t ∈ [0, b], f ∈ SF (u), u ∈ Yr} ]
≤ r.

Subsequently, we will prove that G has a fixed
point by using Lemma 3.

We show that G is a compact map with nonempty
compact, closed and convex values. Let v1, v2 ∈ Gu.
Then there exist f1, f2 ∈ SF (u) such that

v1(t) = T (t)g(u) +

∫ t

0
T (t− s)f1(s) ds,

v2(t) = T (t)g(u) +

∫ t

0
T (t− s)f2(s) ds.

For any given λ ∈ [0, 1], we have

λv1(t) + (1− λ)v2(t) = T (t)g(u)

+

∫ t

0
T (t− s)[λf1(s) + (1− λ)f2(s)] ds.

As the set SF (u) is convex in L1([0, b];X), we get
that

λf1 + (1− λ)f2 ∈ L1([0, b];X),

and
λf1 + (1− λ)f2 ∈ SF (u).
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So we have that

λv1 + (1− λ)v2 ∈ Gu,

i.e., G has convex values.
Now we show that G has closed values. Let

(um)m∈N, (vm)m∈N ⊂ C([0, b];X), satisfying

um → u, vm ∈ G(um), vm → v,

in C([0, b];X). Then there exists a sequence
{fm}∞m=1 ⊂ L1([0, b];X), fm ∈ SF (um) for m ≥ 1,
such that

vm(t) = T (t)g(um) +

∫ t

0
T (t− s)fm(s) ds,

for all t ∈ [0, b]. Consider the linear operator

Γ : L1([0, b];X)→ C([0, b];X)

defined as

(Γf)(t) =

∫ t

0
T (t− s)f(s) ds.

Obviously, Γ is linear and continuous. Then from
Lemma 2, we get that Γ ◦ SF (·) is a closed graph op-
erator. Moreover, we have

vm(·)− T (·)g(um) ∈ Γ ◦ SF (um).

Since um → u and vm → v, we obtain that

v(·)− T (·)g(u) ∈ Γ ◦ SF (u),

that is,

v(t)− T (t)g(u) =
∫ t

0
T (t− s)f(s) ds,

for some f ∈ SF (u). Therefore,G has a closed graph.
Hence G has closed values on C([0, b];X).

Now, it remains to prove that G is compact, or
G1, G2 are compact.

For each t ∈ [0, b], the set {T (t)g(u) : u ∈ Yr}
is relatively compact in X as g is compact and T (t) is
strongly continuous. Then for 0 ≤ t1 < t2 ≤ b, we
have

∥T (t2)g(u)− T (t1)g(u)∥
= ∥[T (t2)− T (t1)]g(u)∥ → 0, as t1 → t2,

uniformly for all u ∈ Yr, due to the compactness of g
and the strong continuity of T (t). Now an application
of Ascoli-Arzela theorem justifiesG1 is a compact op-
erator. Moreover, from Lemma 7, we know that G2 is
a compact operator. Thus G = G1 + G2 is compact
on Yr. Since G has a closed graph. Thus we also have
that G is upper semi-continuous.

Finally, due to Lemma 3, G has at least one fixed
point u ∈ G(u), and u is a mild solution of the prob-
lem (1). This completes the proof. ⊓⊔

6 An example

As an application of our abstract results, we give
the following partial differential system with nonlocal
conditions:

∂
∂tω(t, x) ∈

∂2

∂x2ω(t, x) + F (t, ω(t, x)),
0 ≤ t ≤ b, 0 ≤ x ≤ π,

ω(t, 0) = ω(t, π) = 0,
ω(0, x) = g(ω(t, x)),

(11)

where X = L2([0, π]).
We consider the operator

A : D(A) ⊆ X → X

defined by
Az = z

′′
,

with

D(A) = {z ∈ X : z, z′ are absolutely continuous,

z′′ ∈ X, z(0) = z(π) = 0}.

From Pazy ([23]), we know that A generates a com-
pact C0-semigroup T (t). This implies that A satisfies
the condition (HA).

We assume that the following conditions hold:
(1) F : [0, b]×X → P (X) is a multivalued map

defined by

F (t, z)(x) = F (t, z(x)), 0 ≤ t ≤ b, 0 ≤ x ≤ π,

and assumptions (HF) and (8) hold.
(2) g : C([0, b];X) → X is a continuous func-

tion defined by

g(ω(t, ξ)) =
q∑

j=1

cjω(sj , ξ), 0 ≤ ξ ≤ π,

ω ∈ C([0, b];X), 0 < s1 < · · · < sq < b.
(3) g : C([0, b];X) → X is a continuous func-

tion defined by

g(ω(t, ξ)) =
q∑

j=1

cj
3

√
ω(sj , ξ), 0 ≤ ξ ≤ π,

ω ∈ C([0, b];X), 0 < s1 < · · · < sq < b.
(4) g : C([0, b];X) → X is a continuous func-

tion defined by

g(ω(t, ξ)) =

∫ b

0
h(s) lg(1+|ω(s, ξ)|) ds, 0 ≤ ξ ≤ π,

ω ∈ C([0, b];X), h ∈ L1([0, b];R).
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From the above assumptions, the partial differen-
tial system (11) can be reformulated as the abstract
problem (1). Then we have the following results:

(i) Under the conditions (1)+(2), the assumptions
in Theorem 4 are satisfied. Therefore, the correspond-
ing system (1) has at least a mild solution.

(ii) Under the conditions (1)+(3), the assump-
tions in Theorem 6 are satisfied for large r > 0.
Therefore, the corresponding system (1) has at least
a mild solution.

(iii) Under the conditions (1)+(4), the assump-
tions in Theorem 13 are satisfied for large r > 0.
Therefore, the corresponding system (1) has at least
a mild solution.

7 Conclusion Remark

The existence of semilinear nonlocal differential in-
clusions is discussed in this paper. We introduce some
techniques to study the cases that the nonlocal func-
tion g is Lipschitz continuous or compact, is not Lips-
chitz continuous and not compact, respectively. We
give some general assumptions on the multivalued
function F and nonlocal function g, which covers and
extends some results in this area.

We also remark that the method here can be used
to study impulsive differential inclusions with non-
local conditions. The impulsive differential systems
can be used to model processes which are subjected
to short perturbations whose duration can be negligi-
ble in comparison with the duration of the process.
For more details on this theory and its applications,
we refer to the monographs of Lakshmikantham et al.
citelak3 and the papers of [9, 25]. We can study the
following impulsive differential inclusions

u′(t) ∈ Au(t) + F (t, u(t)), t ∈ [0, b],
∆u(ti) = Ii(u(ti)), i = 1, 2, · · · , p,
0 < t1 < t2 < · · · < tp < b,
u(0) = g(u),

where ∆u(ti) = u(t+i )−u(t
−
i ), u(t

+
i ), u(t

−
i ), denote

the right and the left limit of u at ti. Then we can also
release some conditions on the impulsive functions Ii
and nonlocal function g and get some new results.
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